LOVELL'S AUTOMOTIVE & U-HAUL

Dependable Vehicles Require Maintenance

Fuel Injector and Carburetors

     

Fuel Injectors

A fuel injector is nothing but an electronically controlled valve. It is supplied with pressurized fuel by the fuel pump in your car, and it is capable of opening and closing many times per second.

Inside a Fuel Injector

When the injector is energized, an electomagnet moves a plunger that opens the valve, allowing the pressurized fuel to squirt out through a tiny nozzle. The nozzle is designed to atomize the fuel -- to make as fine a mist as possible so that it can burn easily.

The amount of fuel supplied to the engine is determined by the amount of time the fuel injector stays open. This is called the pulse width, and it is controlled by the ECU.


Fuel injectors mounted in the intake manifold of the engine

The injectors are mounted in the intake manifold so that they spray fuel directly at the intake valves. A pipe called the fuel rail supplies pressurized fuel to all of the injectors.

In order to provide the right amount of fuel, the engine control unit is equipped with a whole lot of sensors. Let's take a look at some of them.

The amount of fuel supplied to the engine is determined by the amount of time the fuel injector stays open. This is called the pulse width, and it is controlled by the ECU.  

The Fall of the Carburetor

For most of the existence of the internal combustion egine, the carburetor has been the device that supplied fuel to the engine. On many other machines, such as lawnmowers and chainsaws, it still is. But as the automobile evolved, the carburetor got more and more complicated trying to handle all of the operating requirements. For instance, to handle some of these tasks, carburetors had five different circuits:
  • Main circuit - Provides just enough fuel for fuel-efficient cruising
  • Idle circuit - Provides just enough fuel to keep the engine idling
  • Accelerator pump - Provides an extra burst of fuel when the accelerator pedal is first depressed, reducing hesitation before the engine speeds up
  • Power enrichment circuit - Provides extra fuel when the car is going up a hill or towing a trailer
  • Choke - Provides extra fuel when the engine is cold so that it will start

In order to meet stricter emissions requirements, catalytic  converters were introduced. Very careful control of the air-to-fuel ratio was required for the catalytic converter to be effective. Oxygen sensors monitor the amount of oxygen in the exhaust, and the engine control unit (ECU) uses this information to adjust the air-to-fuel ratio in real-time. This is called closed loop control -- it was not feasible to achieve this control with carburetors. There was a brief period of electrically controlled carburetors before fuel injection systems took over, but these electrical carbs were even more complicated than the purely mechanical ones.

At first, carburetors were replaced with throttle body fuel injection systems (also known as single point or central fuel injection systems) that incorporated electrically controlled fuel-injector valves into the throttle body. These were almost a bolt-in replacement for the carburetor, so the automakers didn't have to make any drastic changes to their engine designs.

Gradually, as new engines were designed, throttle body fuel injection was replaced by multi-port fuel injection (also known as port, multi-point or sequential fuel injection). These systems have a fuel injector for each cylinder, usually located so that they spray right at the intake valve. These systems provide more accurate fuel metering and quicker response.